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ABSTRACT Accurate prediction of protein sta-
bility changes resulting from single amino acid
mutations is important for understanding protein
structures and designing new proteins. We use sup-
port vector machines to predict protein stability
changes for single amino acid mutations leveraging
both sequence and structural information. We evalu-
ate our approach using cross-validation methods on
a large dataset of single amino acid mutations.
When only the sign of the stability changes is consid-
ered, the predictive method achieves 84% accu-
racy—a significant improvement over previously
published results. Moreover, the experimental re-
sults show that the prediction accuracy obtained
using sequence alone is close to the accuracy ob-
tained using tertiary structure information. Be-
cause our method can accurately predict protein
stability changes using primary sequence informa-
tion only, it is applicable to many situations where
the tertiary structure is unknown, overcoming a
major limitation of previous methods which require
tertiary information. The web server for predictions
of protein stability changes upon mutations (MU-
pro), software, and datasets are available at http://
www.igb.uci.edu/servers/servers.html. Proteins 2006;
62:1125–1132. © 2005 Wiley-Liss, Inc.

INTRODUCTION

Single amino acid mutations can significantly change
the stability of a protein structure. Thus, biologists and
protein designers need accurate predictions of how single
amino acid mutations will affect the stability of a protein
structure.1–7 The energetics of mutants has been studied
extensively both through theoretical and experimental
approaches. The methods for predicting protein stability
changes resulting from single amino acid mutations can be
classified into four general categories: (1) physical poten-
tial approach; (2) statistical potential approach; (3) empiri-
cal potential approach; and (4) machine learning ap-
proach.8 The first three methods are similar in that they
all rely on energy functions.9 Physical potential ap-
proaches10–17 directly simulate the atomic force fields
present in a given structure and, as such, remain too
computationally intensive to be applied to large datasets.9

Statistical potential approaches16,18–25 derive potential
functions using statistical analysis of the environmental
propensities, substitution frequencies, and correlations of
contacting residues in solved tertiary structures. Statisti-

cal potential approaches achieve predictive accuracy com-
parable to physical potential approaches.26

The empirical potential approach9,27–34 derives an en-
ergy function by using a weighted combination of physical
energy terms, statistical energy terms, and structural
descriptors, and by fitting the weights to the experimental
energy data. From a data fitting perspective, both machine
learning methods8,35,36 and empirical potential methods
learn a function for predicting energy changes from an
experimental energy dataset. However, instead of fitting a
linear combination of energy terms, machine learning
approaches can learn more complex nonlinear functions of
input mutation, protein sequence, and structure informa-
tion. This is desirable for capturing complex local and
nonlocal interactions that affect protein stability. Machine
learning approaches such as support vector machines
(SVMs) and neural networks are more robust in their
handling of outliers than linear methods, thus, explicit
outlier detection used by empirical energy function ap-
proaches9 is unnecessary. Furthermore, machine learning
approaches are not limited to using energy terms; they can
readily leverage all kinds of information relevant to pro-
tein stability. With suitable architectures and careful
parameter optimization, neural networks can achieve
performance similar to SVMs. We choose to use SVMs in
this study because they are not susceptible to local minima
and a general high-quality implementation of SVMs (SVM-
light37,38) is publicly available.

Most previous methods use structure-dependent informa-
tion to predict stability changes, and therefore cannot be
applied when tertiary structure information is not avail-
able. Although nonlocal interactions are the principal
determinant of protein stability,19 previous research19,34,35

shows that local interactions and sequence information
can play important roles in stability prediction. Casadio et
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al.35 uses sequence composition and radial basis neural
networks to predict the energy changes caused by muta-
tions. Gillis and Rooman19,39 show that statistical torsion
potentials of local interactions along the chain based on
propensities of amino acids associated with backbone
torsion angles is important for energy prediction, espe-
cially for the partially buried or solvent-accessible resi-
dues. The AGADIR algorithm,28,29 which uses only local
interactions, has been used to design the mutations that
increase the thermostability of protein structures. Bord-
ner and Abagyan34 show that the empirical energy terms
based on sequence information can be used to predict the
energy change effectively, even though accuracy is still
significantly lower than when using structural informa-
tion. Frenz36 uses neural networks with sequence-based
similarity scores for mutated positions to predict protein
stability changes in Staphylococcal nuclease at 20 residue
positions.

Here we develop a new machine-learning approach
based on support-vector machines to predict the stability
changes for single site mutations in two contexts taking
into account structure-dependent and sequence-depen-
dent information, respectively. In the first classification
context, we predict whether a mutation will increase or
decrease the stability of protein structure as in Capriotti et
al.8 In this framework, we focus on predicting the sign of
the relative stability change (��G). In many cases, the
correct prediction of the direction of the stability change is
more relevant than its magnitude.8 In the second regres-
sion context, we use an SVM-based method to predict
directly the ��G resulting from single site mutations, as
most previous methods do. A direct prediction of the value
of relative stability changes can be used to infer the
directions of mutations by taking the sign of ��G.

There are a variety of ways in which sequence informa-
tion can be used for protein stability prediction. Previous
methods use residue composition35 or local interactions
derived from a sequence. Our method directly leverages
sequence information by using it as an input to the SVM.
We use a local window centered around the mutated
residue as input. This approach has been applied success-
fully to the prediction of other protein structural features,
such as secondary structure and solvent accessibility.40–43

The direct use of sequence information as inputs can help
machine learning methods extract the sequence motifs
which are shown to be important for protein stability.29

We take advantage of the large amount of experimental
mutation data deposited in the ProTherm44 database to
train and test our method. On the same dataset compiled
in Capriotti et al.,8 our method yields a significant improve-
ment over previous energy-based and neural network-
based methods using 20-fold cross-validation.

An important methodological caveat results from the
dataset containing a significant number of identical muta-
tions applied to the same sites of the same proteins. We
find that it is important to remove the site-specific redun-
dancy to accurately evaluate the prediction performance
for mutations at different sites. On the redundancy-
reduced dataset, the prediction accuracy obtained using

sequence information alone is close to the accuracy ob-
tained using additional structure-dependent information.
Thus, our method can make accurate predictions in the
absence of tertiary structure information. Furthermore, to
estimate the performance on unseen and nonhomologous
proteins, we remove the mutations associated with the
homologous proteins and split the remaining mutations by
individual proteins. We use the mutations of all proteins
except for one to train the system and use the remaining
one for testing (leave-one-out cross validation). Thus we
empirically estimate how well the method can be general-
ized to unseen and nonhomologous proteins.

MATERIALS AND METHODS
Data

We use the dataset S1615 compiled by Capriotti et al.8

S1615 is extracted from the ProTherm44 database for
proteins and mutants. The dataset includes 1615 single
site mutations obtained from 42 different proteins. Each
mutation in the dataset has six attributes: PDB code,
mutation, solvent accessibility, pH value, temperature,
and energy change (��G). To make the values of solvent
accessibility, pH, and temperature in the same range as
the other attributes, they are divided by 100, 10, and 100,
respectively. If the energy change ��G is positive, the
mutation increases stability and is classified as a positive
example. If ��G is negative, the mutation is destabilizing
and is classified as a negative example. For the classifica-
tion task, there are 119 redundant examples that have
exactly the same values as some other example for all six
attributes, provided only the sign of the energy changes is
considered. These examples correspond to identical muta-
tions at the same sites of the same proteins with the same
temperature and pH value, only the magnitudes of the
energy changes are slightly different. To avoid any redun-
dancy bias, we remove these examples from the classifica-
tion task. We refer to this redundancy-reduced dataset as
SR1496. To leverage both sequence and structure informa-
tion, we extract full protein sequences and tertiary struc-
tures from the Protein Data Bank45 for all mutants
according to their PDB codes.

We test three different encoding schemes (SO: sequence
only, TO: structure only, ST: sequence and structure) (see
Inputs and Encoding Schemes, below). Since solvent acces-
sibility contains structure information, to compare SO
with TO and ST fairly, we test the SO scheme without
using solvent accessibility on the SR1496 dataset. All
schemes are evaluated using 20-fold cross validation.
Under this procedure, the dataset is split randomly and
evenly into 20 folds. Nineteen folds are used as the
training dataset and the remaining fold is used as the test
dataset. This process is repeated 20 times where each fold
is used as the test dataset once. Performance results are
averaged across the 20 experiments. The cross-validated
results are compared with similar results in the literature
obtained using a neural network approach.8 Using the
same experimental settings as in Capriotti et al.,8 the
subset S388 of the S1615 dataset is also used to compare
our predictor with other predictors based on potential
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functions and available over the web. The S388 dataset
includes 388 unique mutations derived under physiologi-
cal conditions. We gather the cross validation predictions
restricted to the data points in the S388 dataset, and then
compute the accuracy and compare it with the three
energy function based methods9,23,24,39 available over the
web.

There is an additional subset of 361 redundant muta-
tions that are identical to other mutations in the S1615
dataset, except for differences in temperature or pH. The
energy changes of these mutations are highly correlated;
and the signs of the energy changes are always the same
with a few exceptions. This is in contrast to the S388
subset, which contains no repeats of the same mutations at
the same site. We find that it is important to remove this
redundancy for comparing the performance of structure-
dependent and sequence-dependent encoding schemes.
Thus we derive a dataset without using solvent accessibil-
ity, pH, and temperature information and remove all the
mutations—with the same or different temperature and
pH value—at the same site of the same proteins. This
stringent dataset includes 1135 mutations in total. We
refer to this dataset as SR1135.

In order to estimate the performance of mutation stabil-
ity prediction on unseen and nonhomologous proteins, we
use also UniqueProt46 to remove homologous proteins by
setting the HSSP threshold to 0, so that the pairwise
similarity between any two proteins is below 25%. Because
the proteins in the S1615 dataset are very diverse, only six
proteins (1RN1, 1HFY, 1ONC, 4LYZ, 1C9O, and 1ANK)
are removed. We remove 154 mutations associated with
these proteins. Then we split the mutation data into 36
folds according to the remaining 36 proteins. For each fold,
we further remove all the identical mutations at the same
sites. There are 1023 mutations left in total. We refer to
this dataset as SR1023. We apply an encoding scheme
using only sequence information to this dataset without
using solvent accessibility, pH, and temperature. We use
36-fold cross validation to evaluate the scheme by training
SVMs on 35 proteins and testing them on the remaining
one. Thus, we empirically estimate how well the method
can be generalized to unseen and nonhomologous proteins.

For the regression task, we use sequence or structure
information without considering solvent accessibility, tem-
perature, and pH. We remove identical mutations at
identical sites with identical energy changes. The final
dataset has 1539 data points. We refer to this dataset as
SR1539.

Inputs and Encoding Schemes

Most previous methods, including the neural network
approach in Capriotti et al.,8 use tertiary structure infor-
mation for the prediction of stability changes and in
general do not use the local sequence context directly. To
investigate the effectiveness of sequence-dependent and
structure-dependent information, we use three encoding
schemes: Sequence-Only (SO), Structure-Only (TO), and
the combinations of sequence and structure (ST). All the
schemes include the mutation information consisting of 20

inputs, which code for the 20 different amino acids. We set
to �1 the input corresponding to the deleted residue and to
1 the newly introduced residue; all other inputs are set to
0.8

The SO scheme encodes the residues in a window
centered on the target residue. We investigate how win-
dow size affects prediction performance. A range of win-
dow sizes work well for this task, however, we chose to use
windows of size 7 because this is the smallest size which
produces accurate results. As more data becomes avail-
able, a larger window may become helpful. Since the target
residue is already encoded in the mutation information,
the SO scheme only needs to encode three neighboring
residues on each side of the target residue. 20 inputs are
used to encode the residue type at each position. So the
total input size of the SO scheme is 140 (6 � 20 � 20). The
TO scheme uses 20 inputs to encode the three-dimensional
environment of the target residue. Each input corresponds
to the frequency of each type of residue within a sphere of 9
Å radius around the target mutated residue. The cut-off
distance threshold of 9 Å between C� atoms worked best in
the previous study.8 So the TO encoding scheme has 40
(20 � 20) inputs. The ST scheme containing both sequence
and structure information in SO and TO scheme has 160
inputs (6 � 20 � 20 � 20).

On the SR1496 dataset, two extra inputs (temperature
and pH) are used with the SO scheme; three extra inputs
(solvent accessibility, temperature, and pH) are used with
the TO and ST schemes. These additional inputs are not
used for all other experiments on the SR1135, SR1023, and
SR1539 datasets.

Prediction of Stability Changes Using Support
Vector Machines

From a classification standpoint, the objective is to
predict whether a mutation increases or decreases the
stability of a protein, without concern for the magnitude of
the energy change, as in Capriotti et al.8 From a regression
perspective, the objective is to predict the actual value of
��G. Here we apply SVMs47 (see Burges48 and Smola and
Scholkopf49 for tutorials on SVMs) to the stability classifi-
cation and regression problems.

SVMs provide nonlinear function approximations by
nonlinearly mapping input vectors into feature spaces and
using linear methods for regression or classification in
feature space47,50–52 (Figs. 1, 2). Thus SVMs, and more
generally kernel methods, combine the advantages of
linear and nonlinear methods by first embedding the data
into a feature space equipped with a dot product and then
using linear methods in feature space to perform classifica-
tion or regression tasks based on the dot product between
data points. One important feature of SVMs is that
computational complexity is reduced because data points
do not have to be explicitly mapped into the feature space.
Instead SVMs use a kernel function, K(x,y ) � Ø(x) � Ø(y)
to calculate the dot product of Ø(x) and Ø(y) implicitly,
where x and y are input data points, Ø(x) and Ø(y) are the
corresponding data vectors in feature space, and Ø is the
map from input space to feature space. The linear classifi-

PROTEIN STABILITY CHANGES FOR SINGLE-SITE MUTATIONS 1127



cation or regression function can be computed from the
Gram matrix of kernel values between all training points.

Given a set of data points S (S� denotes the subset of
positive training data points (��G � 0) and S� denotes the
subset of negative training data points (��G � 0), based on
structure risk minimization theory,47,50–52 SVMs learn a
classification function f(x) in the form of

f	x
 � �
xiεS�

�iK	x,xi
 � �
xiεS�

�iK	x,xi
 � b (1)

f	x
 � �
xiεS

	�i � �i*
K	x,xi
 � b (2)

where �i or �i* are non-negative weights assigned to the
training data point xi during training by minimizing a
quadratic objective function and b is the bias term. K is the
kernel function, which can be viewed as a function for
computing the similarity between two data points. Thus
the function f(x) can be viewed as a weighted linear
combination of similarities between the training data
points xi and the target data point x. Only data points with
positive weight � in the training dataset affect the final
solution—these are called the support vectors. For classifi-
cation problems, a new data point x is predicted to be

positive (��G � 0) or negative (��G � 0) by taking the
sign of f(x). For regression, f(x) is the predicted value of
��G.

We use SVM-light (http://svmlight.joachims.org)37,38 to
train and test our methods. We experimented with several
common kernels including linear kernel, Gaussian radial
basis kernel (RBF), polynomial kernel, and sigmoid ker-
nel. In our experience, the RBF kernel [exp(��Px � yP2)]
works best for mutation stability prediction. Using the
RBF kernel, f(x) is a weighted sum of Gaussians centered
on the support vectors. Almost any separating boundary or
regression function can be obtained with this kernel,53

thus it is important to tune the parameters of SVMs to
achieve good generalization performance and avoid overfit-
ting. We adjust three critical parameters in both classifica-
tion and regression. For both tasks, we adjust the width
parameter � of the RBF kernel and the regularization
parameter C. � is the inverse of the variance of the RBF
and controls how peaked are the Gaussians centered on
the support vectors. The bigger is �, the more peaked are
the Gaussians, and the more complex are the resulting
decision boundaries.53 C is the maximum value that the
weights � can have. C controls the trade-off between

Fig. 1. Classification with SVMs. a: The negative and positive examples (white and grey circles) cannot be separated with a line in the input space X.
b: Instead of looking for a separating hyperplane (thick line) directly in the input space, SVMs map training data points implicitly into a feature space H
through a function Ø, so that the mapped points become separable by a hyperplane in the feature space. c: This hyperplane corresponds to a nonlinear
complex surface in the original input space. The two dashed lines in the feature space correspond to the boundaries of the positive and negative
examples respectively. The distance between these lines is the margin of the SVM.

Fig. 2. Regression with SVMs. a: The data points cannot be fit with a line in the input space X. b: SVMs map data points implicitly into a feature space
H through a function Ø, so that the mapped points can be fit by a line in the feature space. c: This line corresponds to a nonlinear regression curve in the
original input space. The two virtual lines centered on the regression line in feature space form a regression tube with width 2e.
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training error and the smoothness of f(x) (particularly, the
margin for classification).47,50–52 A larger C corresponds to
less training errors and a more complex (less smooth)
function f(x) which can overfit training data.

For classification, the ratio of penalty of training error
between positive examples and negative examples, is
another parameter that we tune. A cost �1 penalizes
training error of positive examples more than that of
negative examples. For regression, the width of the regres-
sion tube (ε) which controls the sensitivity of the cost
associated with training errors [f(x) � ��G], needs to be
tuned as well. The training error within range [�ε, �ε]
does not affect the regression function.

The three parameters for each task (penalty ratio, �, and
C for classification; tube width, �, and C for regression) are
optimized on the training data. For each cross-validation
fold, we optimize these parameters using the LOOCV
(leave-one-out cross validation) procedure. Under the
LOOCV procedure, for a training dataset with N data
points, in each round, one data point is held out and the
model is trained on the remaining N � 1 data points. Then
the model is tested on the held-out data point. This process
is repeated N times until all data points are tested once
and the overall accuracy is computed for the training
dataset.

For all the parameter sets we tested, we choose a set of
parameters with the best accuracy to build the model on
the training dataset; and then it is blindly tested on the
testing dataset. A set of good parameters for classification
on the SR1496 dataset is (penalty ratio � 1, � � 0.1, C � 5)
for the SO scheme, (penalty ratio � 2, � � 0.1, C � 5) for
the TO schemes, and (penalty ratio � 2, � � 0.1, C � 5) for
the ST scheme. A set of good parameters on the SR1135
dataset is (penalty ratio � 1, � � 0.05, C � 2) for the SO
scheme, (penalty ratio � 1, � � 0.05, C � 4) for the TO
scheme, and (penalty ratio � 1, � � 0.06, C � 0.5) for the
ST scheme. For the regression task, a set of good parame-
ters for all schemes is (tube width � 0.1, � � 0.1, C � 5).

RESULTS AND DISCUSSION

For classification, we use a variety of standard measures
to evaluate the prediction performance of our method and
compare it with previous methods. In the following equa-
tions, TP, FP, TN, and FN refer to the number of true
positives, false positives, true negatives, and false nega-
tives respectively. The measures we use include correla-
tion coefficient {[(TP � TN) � (FP � FN)]/sqrt[(TP �
FN) � (TP � FP) � (TN � FN) � (TN � FP)]}, accuracy
[(TN � TP)/(TN � TP � FN � FP)], specificity [TP/(TP �

FP)] and sensitivity [TP/(TP � FN)] of positive examples,
and specificity [TN/(TN � FN)] and sensitivity [TN/(TN �
FP)] of negative examples.

Table I reports the classification performance of three
schemes on the SR1496 dataset. The results show that the
performance of all three schemes is improved over the
neural network approach8 using most measures, even
though we use a redundancy-reduced dataset instead of
the S1615 dataset. (On the original S1615 dataset, the
accuracy is about 85–86% for all three schemes). For
instance, on average, the accuracy is improved by 3% to
about 84%, and the correlation coefficient is increased by
0.1. The sensitivity of positive examples is improved by
more than 10% using these three schemes, while the
specificity of positive examples is very similar. The sensi-
tivity of negative examples using the SO and TO schemes
is slightly worse than for the neural network approach, but
the specificity of negative examples is improved by more
than 5% over the neural network approach. The accuracy
of the SO scheme is slightly lower than that of the TO and
ST schemes.

Following the same comparison scheme, we compare our
methods with energy-based methods9,23,24,39 available on
the web and with the neural network method8 in the
classification context on the S388 dataset. We compare the
predictions of the following methods: FOLDX,9 DFIRE,24

and PoPMuSiC,23,39 and NeuralNet.8 In Table II, we show
the results obtained with the three schemes (SO, TO, ST)
and the four external predictors on the S388 dataset,
where results for the energy function based methods are
taken from Capriotti et al.8 The results show that our
method, using the three encoding schemes for this specific
task, performs similarly to, or better than, all other
methods using most evaluation measures. For instance,
the correlation coefficient of our method is better than all
other methods, while the accuracy is better than DFIRE,
FOLDX, and PoPMuSiC, but slightly worse than Neural-
Net. FOLDX and DFIRE have relatively higher sensitivity
but lower specificity on positive examples than other
methods.

Table III reports the results on the SR1135 dataset
without any site-specific redundancy. All the schemes do
not use solvent accessibility, pH, and temperature. The
results show that the accuracy of the structure-dependent
schemes (TO and ST) are about 1% higher than the
sequence-dependent scheme (SO). Specifically, the correla-
tion coefficient of the TO scheme is significantly higher
than the SO scheme. But the accuracy of the SO scheme is
still very close to the accuracy derived using tertiary

TABLE I. Results (Correlation Coefficient, Accuracy, Specificity, Sensitivity of Both Positive
and Negative Examples) on the SR1496 Dataset†

Method Correlation Coefficient Accuracy Sensitivity (�) Specificity (�) Sensitivity (�) Specificity (�)

SO 0.59 0.841 0.711 0.693 0.897 0.888
TO 0.60 0.845 0.711 0.712 0.895 0.895
ST 0.60 0.847 0.671 0.733 0.910 0.883
NeuralNet* 0.49 0.810 0.520 0.710 0.910 0.830

†The last row (NeuralNet*) is the current best results reported in Capriotti et al.8
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structure information. This is probably due to two reasons.
First, the sequence window contains a significant amount
of information related to the prediction of mutation stabil-
ity. Second, the method for encoding structural informa-
tion in the TO and ST schemes is not optimal for the task
and does not capture all the structural information that is
relevant for protein stability. On this redundancy-reduced
dataset, we also compare the accuracy according to the
type of secondary structure encountered at the mutation
sites. The secondary structure is assigned by the DSSP
program.54 Table IV reports the specificity and sensitivity
for both positive and negative examples according to three
types of secondary structure (helix, strand, and coil) using
the SO scheme. The SO scheme achieves similar perfor-
mance on helix and coil mutations. Sensitivity and specific-
ity for positive examples on �-strands, however, is signifi-
cantly lower. This is probably due to the long-range
interactions between �-strands.

Table V reports the results of the SO scheme on the
SR1023 dataset after removing both the homologous pro-
teins and site-specific redundancy. The overall accuracy is
74%. Not surprisingly, the accuracy is lower than the
accuracy obtained when mutations on homologous or
identical proteins are included in the training and test
dataset. The sensitivity and specificity of the positive
examples drop significantly. This indicates that the accu-
racy of the method depends on having seen mutations on
similar or identical proteins in the training dataset. The

results show that the prediction of mutation stability on
unseen and nonhomologous proteins remains very challeng-
ing.

The performance of SVM regression is evaluated using
the correlation between the predicted energy and experi-
mental energy, and the standard error (std or root-mean-
square error) of the predictions. Table VI shows the
performance of the direct prediction of ��G using SVM
regression with the three encoding schemes. The three
schemes have similar performance. The TO scheme per-
forms slightly better with a correlation of 0.76, and std of
1.09. Figure 3 shows the scatter plots of predicted energy
versus experimental energy using the SO and TO schemes.
Overall, the results show that our method effectively uses
sequence information to predict energy changes associated
with single amino acid substitutions both in regression
and classification tasks.

CONCLUSIONS

In this study, we have used support vector machines to
predict protein stability changes for single-site mutations.

TABLE II. Results on the S388 Dataset

Method Correlation Coefficient Accuracy Sensitivity (�) Specificity (�) Sensitivity (�) Specificity (�)

FOLDX 0.25 0.75 0.56 0.26 0.78 0.93
DFIRE 0.11 0.68 0.44 0.18 0.71 0.90
PoPMuSic 0.20 0.85 0.25 0.33 0.93 0.90
NeuralNet 0.25 0.87 0.21 0.44 0.96 0.90
SO 0.26 0.86 0.30 0.40 0.94 0.90
TO 0.28 0.86 0.31 0.42 0.94 0.91
ST 0.27 0.86 0.31 0.40 0.93 0.91

TABLE III. Results on the SR1135 Dataset

Method Correlation Coefficient Accuracy Sensitivity (�) Specificity (�) Sensitivity (�) Specificity (�)

SO 0.31 0.78 0.28 0.64 0.95 0.80
TO 0.39 0.79 0.46 0.60 0.90 0.83
ST 0.34 0.79 0.29 0.71 0.97 0.80

TABLE IV. Specificity and Sensitivity of the SO Scheme for Helix, Strand, and Coil on
the SR1135 Dataset

Secondary structure Sensitivity (�) Specificity (�) Sensitivity (�) Specificity (�)

Helix 0.31 0.67 0.94 0.79
Strand 0.16 0.48 0.97 0.84
Coil 0.30 0.68 0.95 0.79

TABLE V. Results on the SR1023 Dataset Using the SO Scheme

Method Correlation Coefficient Accuracy Sensitivity (�) Specificity (�) Sensitivity (�) Specificity (�)

SO 0.13 0.74 0.15 0.42 0.93 0.77

TABLE VI. Results (Correlation Between Predicted
Energy and Experimental Energy, and Standard Error) on

the SR1539 Dataset Using SVM Regression

Scheme SO TO ST

Correlation 0.75 0.76 0.75
STD 1.10 1.09 1.09
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Our method consistently shows better performance than
previous methods evaluated on the same datasets. We
demonstrate that sequence information can be used to
effectively predict protein stability changes for single site
mutations. Our experimental results show that the predic-
tion accuracy based on sequence information alone is close
to the accuracy of methods that depend on tertiary struc-
ture information. This overcomes one important shortcom-
ing of previous approaches that require tertiary structures
to make accurate predictions. Thus, our approach can be
used on a genomic scale to predict the stability changes for
large numbers of proteins with unknown tertiary struc-
tures.
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